Teorema de Brahmagupta

De testwiki
La revisió el 17:54, 30 juny 2021 per imported>EVA3.0 (bot) (Diacrítics)
(dif.) ← Versió més antiga | Versió actual (dif.) | Versió més nova → (dif.)
Salta a la navegació Salta a la cerca
(BD)(AC) i (EF)(BC)
implica AF=FD 

En geometria euclidiana, el teorema de Brahmagupta (anomenat així en honor del matemàtic indi Brahmagupta)[1] dona una condició necessària sobre la perpendicularitat de les diagonals d'un quadrilàter cíclic (inscriptible en un cercle).[2] Plantilla:Teorema

Demostració

Donat un quadrilàter inscriptible ABCD les diagonals del qual són perpendiculars, es vol demostrar que AF = FD. Per això, es demostrarà que AF i FD són tots dos iguals a FM.

L'angle FAM i CBM són iguals (a causa del teorema dels angles inscrits que s'intersequen el mateix arc de cercle). A més, els angles CBM i CME són angles complementaris a l'angle BCM. Finalment, AFM és un triangle isòsceles, i en conseqüència, els seus costats AF i FM són iguals.

De manera anàloga, es demostra que FD = FM. Els angles FDM, BCM, BME i DMF són tots iguals, llavors DFM és un triangle isòsceles, d'on FD = FM. D'aquí, es dedueix que AF = FD, cosa que demostra el teorema.

Vegeu també

Referències

Plantilla:Referències

Enllaços externs