Connexitat per arcs

De testwiki
La revisió el 21:20, 29 juny 2020 per imported>Rebot (neteja i estandardització de codi)
(dif.) ← Versió més antiga | Versió actual (dif.) | Versió més nova → (dif.)
Salta a la navegació Salta a la cerca

En topologia, es diu que un espai (o un subespai) és connex per arcs o arc-connex (o també connex per camins) si compleix una propietat que, intuïtivament, pot entendre's com la possibilitat de formar un camí entre dos punts qualssevol de l'espai o subespai. Cadascun dels subespais arc-connexs no continguts en un subespai arc-connex major s'anomena component arc-connexa de l'espai.

Definició formal

Direm que un conjunt X és connex per camins o arc-connex si donats x1,x2X hi ha un camí continu α:[0,1]X tal que α(0)=x1 i α(1)=x2.

Propietats

Pinta del topòleg

La connexitat per camins implica connexitat, però el recíproc no és cert en general. Un contraexemple molt típic és l'anomenat pinta del topòleg, X=AB, on A={0}×]1,1[ i B=([0,1]×{0})({1n:n}×[0,1]). X és connex, però no connex per camins.

Ser connex per camins no és una propietat hereditària (és a dir, si un conjunt és connex per camins, qualsevol subconjunt d'aquest no és necessàriament connex per camins). Però, ser connex per camins és una propietat topològica (és a dir, la imatge mitjançant una aplicació contínua d'un conjunt connex per camins és connexa per camins).