Polinomi de Neumann
En matemàtiques, un polinomi de Neumann, introduït per Carl Neumann per al cas especial , és un polinomi en 1/z s'utilitza per desenvolupar funcions en termes de funcions de Bessel.[1]
Els primers polinomis són
Una forma general del polinomi és
i tenen la funció generatriu
on J són funcions de Bessel.
Per a desenvolupar una funció f en la forma
per a , fem
on i c és la distància de la singularitat més propera de de .
Exemples
Un exemple és el desenvolupament
o més general, la fórmula Sonine[2]
on és el polinomi de Gegenbauer. Llavors,
la funció hipergeomètrica confluent
i en particular
la fórmula de canvi d'índex
el desenvolupament de Taylor (fórmula d'addició)
(cf.[3]) i el desenvolupament de la integral de la funció de Bessel,
són del mateix tipus.
Referències
Vegeu també
- Funció de Bessel
- Polinomi de Bessel
- Polinomi de Lommel
- Sèries de Fourier–Bessel
- Transformació de Hankel
- ↑ Abramowitz and Stegun, p. 363, 9.1.82 ff.
- ↑ Plantilla:Harvnb II.7.10.1, p.64
- ↑ Plantilla:Ref-llibre