Número cabtaxi

De testwiki
La revisió el 01:47, 16 març 2024 per imported>Rebot (eliminant redireccions de plantilla)
(dif.) ← Versió més antiga | Versió actual (dif.) | Versió més nova → (dif.)
Salta a la navegació Salta a la cerca

Plantilla:Falten referències Un número cabtaxi, en matemàtiques, el n número cabtaxi, sovint anomenat Cabtaxi(n), és definit com el més petit enter que es pot escriure en n maneres o maneres diferents (en un ordre de termes aproximats) com a suma de dos cubs positius, nuls o negatius. Els nombres cabtaxi existeixen per a tot n ≥ 1; fins a abril de 2014 es coneixen 10 nombres cabtaxi:

Cabtaxi(1)=1=13+03
Cabtaxi(2)=91=33+43=6353
Cabtaxi(3)=728=63+83=9313=123103
Cabtaxi(4)=2741256=1083+1143=1403143=16831263=20731833
Cabtaxi(5)=6017193=1663+1133=1803+573=1853683=20931463=24632073
Cabtaxi(6)=1412774811=9633+8043=113433573=115535043=124638053=2115320043=4746347253
Cabtaxi(7)=11302198488=19263+16083=19393+15893=226837143=2310310083=2492316103=4230340083=9492394503
Cabtaxi(8)=137513849003496=229443+500583=365473+445973=369843+442983=521643164223=531303231843=573163370303=972903921843=21831632173503
Cabtaxi(9)=424910390480793000=6452103+5386803=6495653+5323153=75240931014093=75978032391903=77385033376803=83482035393503=1417050313426803=3179820331657503=5960010359560203
Cabtaxi(10)=933528127886302221000=774801303774282603=413376603411547503=184216503174548403=10852660370115503=10060050343898403=9877140331094703=9781317313183173=97733303845603=84443453+69200953=83877303+70028403

O en un gràfic més clar:

n Ca(n) a^3+b^3 Descobridor
1 1 1,0
2 91 3,4
6,-5
3 728 6,8
9,-1
12,-10
4 2741256 2421,19083
140,-14
168,-126
207,-183
5 6017193 166,113
180,57
185,-68
209,-146
246,-207
Randall L. Rathbun
6 1412774811 963,804
1134,-357
1155,-504
1246,-805
2115,-2004
4746,-4725
Randall L. Rathbun
7 11302198488 1926,1608
1939,1589
2268,-714
2310,-1008
2492,-1610
4230,- 4008
9492,-9450
Randall L. Rathbun
8 137513849003496 22944,50058
36547,44597
36984,44298
52164,-16422
53130,-23184
57316,-37030
97290,-92184
218316,-217350
Daniel J. Bernstein
9 424910390480793000 645210,538680
649565,532315
752409,-101409
759780,-239190
773850,-337680
834820,-539350
1417050,-1342680
3179820,-3165750
5960010,-5956020
Duncan Moore

Els nombres Cabtaxi(5), Cabtaxi(6) i Cabtaxi(7) han estat trobats per Randall L. Rathbun; i el Cabtaxi(8) per Daniel J. Bernstein, que ha demostrat que Cabtaxi(9) ≥ 1019, mentre que Duncan Moore, al 2005, trobà els nombres que correspondrien a Cabtaxi (9).

Vegeu també

Plantilla:Autoritat