Fitxer:Fourier transform, Fourier series, DTFT, DFT.svg

De testwiki
Salta a la navegació Salta a la cerca
Fitxer original (fitxer SVG, nominalment 1.128 × 672 píxels, mida del fitxer: 100 Ko)

Aquest fitxer prové de Wikimedia Commons i pot ser usat per altres projectes. La descripció de la seva pàgina de descripció es mostra a continuació.

Resum

click to expand

This graphic was created with the help of the following Octave script:

graphics_toolkit gnuplot
pkg load signal
%=======================================================
function Y = DFT(y,t,f)
  W = exp(-j*2*pi * t' * f);                    % Nx1 × 1x8N = Nx8N
  Y = abs(y * W);                               % 1xN × Nx8N = 1x8N
% Y(1)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2p ×-4096/8N × t(n)) }
% Y(2)  = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2p ×-4095/8N × t(n)) }
% Y(8N) = SUM(n=1,2,...,N): { e^(-B × t(n)^2) × e^(-j2p × 4095/8N × t(n)) }
  Y = Y/max(Y);
endfunction  

  T = 1;                             % time resolution (arbitrary)
  Nyquist = 1/T;                     % Nyquist bandwidth
  N = 1024;                          % sample size
  I  = 8;                            % freq interpolation factor
  NI = N*I;                          % number of frequencies in Nyquist bandwidth
  freq_resolution = Nyquist/NI;
  X  = (-NI/2 : NI/2 -1);            % center the frequencies at the origin
  freqs = X * freq_resolution;       % actual frequencies to be sampled and plotted

% (https://octave.org/doc/v4.2.1/Graphics-Object-Properties.html#Graphics-Object-Properties)
  set(0, "DefaultAxesXlim",[min(freqs) max(freqs)])
  set(0, "DefaultAxesYlim",[0 1.05])
  set(0, "DefaultAxesXtick",[0])
  set(0, "DefaultAxesYtick",[])
% set(0, "DefaultAxesXlabel","frequency")
  set(0, "DefaultAxesYlabel","amplitude")

#{
Sample a funtion at intervals of T, and display only the Nyquist bandwidth [-0.5/T 0.5/T].  
Technically this is just one cycle of a periodic DTFT, but since we can't see the periodicity,
it looks the same as a continuous Fourier transform, provided that the actual bandwidth is
significantly less than the Nyquist bandwidth; i.e. no aliasing.
#}
% We choose the Gaussian function e^{-B (nT)^2}, where B is proportional to bandwidth.
  B = 0.1*Nyquist;
  x = (-N/2 : N/2 -1);              % center the samples at the origin
  t = x*T;                          % actual sample times
  y = exp(-B*t.^2);                 % 1xN  matrix
  Y = DFT(y, t, freqs);             % 1x8N matrix

% Re-sample to reduce the periodicity of the DTFT.  But plot the same frequency range.
  T = 8/3;
  t = x*T;                         % 1xN
  z = exp(-B*t.^2);                % 1xN
  Z = DFT(z, t, freqs);            % 1x8N
%=======================================================
  hfig = figure("position", [1 1 1200 900]);

  x1 = .08;                   % left margin for annotation
  x2 = .02;                   % right margin
  dx = .05;                   % whitespace between plots
  y1 = .08;                   % bottom margin
  y2 = .08;                   % top margin
  dy = .12;                   % vertical space between rows
  height = (1-y1-y2-dy)/2;    % space allocated for each of 2 rows
  width  = (1-x1-dx-x2)/2;    % space allocated for each of 2 columns
  x_origin1 = x1;
  y_origin1 = 1 -y2 -height;  % position of top row
  y_origin2 = y_origin1 -dy -height;
  x_origin2 = x_origin1 +dx +width;
%=======================================================
% Plot the Fourier transform, S(f)

  subplot("position",[x_origin1 y_origin1 width height])
  area(freqs, Y, "FaceColor", [0 .4 .6])
% xlabel("frequency")            % leave blank for LibreOffice input
%=======================================================
% Plot the DTFT

  subplot("position",[x_origin1 y_origin2 width height])
  area(freqs, Z, "FaceColor", [0 .4 .6])
  xlabel("frequency")
%=======================================================
% Sample S(f) to portray Fourier series coefficients

  subplot("position",[x_origin2 y_origin1 width height])
  stem(freqs(1:128:end), Y(1:128:end), "-", "Color",[0 .4 .6]);
  set(findobj("Type","line"),"Marker","none")
% xlabel("frequency")            % leave blank for LibreOffice input
  box on
%=======================================================
% Sample the DTFT to portray a DFT

  FFT_indices = [32:55]*128+1;
  DFT_indices = [0:31 56:63]*128+1;
  subplot("position",[x_origin2 y_origin2 width height])
  stem(freqs(DFT_indices), Z(DFT_indices), "-", "Color",[0 .4 .6]);
  hold on
  stem(freqs(FFT_indices), Z(FFT_indices), "-", "Color","red");
  set(findobj("Type","line"),"Marker","none")
  xlabel("frequency")
  box on
%=======================================================
% Output (or use the export function on the GNUPlot figure toolbar).
  print(hfig,"-dsvg", "-S1200,800","-color", 'C:\Users\BobK\Fourier transform, Fourier series, DTFT, DFT.svg')
Descripció
English: A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.
Note that only the top left graph is an actual Fourier transform. The others may be related to some limit of the Fourier transform of something as it evolves toward something, but are not Fourier transforms themselves. The graph in the upper right shows the coefficients of the Fourier series for the periodic summation of s(t). The graph at the lower left is the Fourier series whose coefficients are the samples of the function s(t). In the graph at the lower right, the portion labeled "FFT" shows coefficeints for a Fourier series which reproduces samples of the periodic summation of s(t). "FFT" indicates that these coefficients can be found by the "Fast Fourier transform if the values of the periodic summation of s(t) are known at the needed values of t.
Data
Font Treball propi
Autor Bob K
Permís
(Com reutilitzar aquest fitxer)
Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
Creative Commons CC-Zero L'ús d'aquest fitxer és regulat sota les condicions de Creative Commons de CC0 1.0 lliurament al domini públic universal.
La persona que ha associat un treball amb aquest document ha dedicat l'obra domini públic, renunciant en tot el món a tots els seus drets de d'autor i a tots els drets legals relacionats que tenia en l'obra, en la mesura permesa per la llei. Podeu copiar, modificar, distribuir i modificar l'obra, fins i tot amb fins comercials, tot sense demanar permís.

Altres versions

This file was derived from:

SVG genesis
InfoField
 El codi font d’aquest SVG no és vàlid perquè hi 2 han errors.
 Aquesta imatge vectorial ha estat creada amb OpenOffice.org
SVG genesis
InfoField
 El codi font d’aquest SVG no és vàlid perquè hi 13 han errors.
 Aquesta imatge vectorial ha estat creada amb LibreOffice

}}

LaTex

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer
A Fourier transform and 3 variations caused by periodic sampling (at interval T) and/or periodic summation (at interval P) of the underlying time-domain function.

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual14:59, 18 set 2024Miniatura per a la versió del 14:59, 18 set 20241.128 × 672 (100 Ko)wikimediacommons>Bob Kadded detail to labels

La pàgina següent utilitza aquest fitxer: