Fitxer:Generation of OAM beams using SLM.gif

De testwiki
Salta a la navegació Salta a la cerca
Generation_of_OAM_beams_using_SLM.gif (503 × 428 píxels, mida del fitxer: 5,6 Mo, tipus MIME: image/gif, en bucle, 200 fotogrames, 50 s)
Nota: per limitacions tècniques no s'animaran les miniatures d'alta resolució d'imatges GIF com aquesta.

Aquest fitxer prové de Wikimedia Commons i pot ser usat per altres projectes. La descripció de la seva pàgina de descripció es mostra a continuació.

Resum

Descripció
English: A light beam with a given orbital angular momentum (OAM) can be generated by letting a standard Gaussian beam impinge on a display of a spatial light modulator (SLM). The phase of the reflected beam is a sum of the original phase and the phase projected onto the SLM. If the phase profile on SLM is flat, the SLM works effectively as a mirror. If the phase has a helical profile, the resulting beam is a Laguerre-Gaussian (LG) beam with a well-defined OAM. The sign as well as the value of OAM can be easily changed by projecting different patterns on the SLM. In real applications, there is a non-negligible admixture in the reflected beam in the form of a Gaussian beam. One can get rid of it by superposing the helical phase on the SLM with a diffraction grating. The resulting pattern, the fork hologram, reflects the LG beam into a different direction than the Gaussian admixture.
Čeština: Světelný paprsek s daným orbitálním momentem hybnosti (OAM) může být generován tak, že se standardní Gaussovský svazek nechá dopadat na displej prostorového modulátoru světla (SLM). Fáze odraženého paprsku je součtem původní fáze a fáze promítnuté na SLM. Je-li fázový profil na SLM plochý, funguje SLM v podstatě jako zrcadlo. Pokud je fáze šroubovicovitá, je odražený paprsek Laguerrův-Gaussův (LG) svazek s dobře definovaným OAM. Znaménko i hodnotu OAM lze snadno změnit promítnutím jiného fázového vzorku na SLM. V reálných aplikacích obsahuje odražený svazek nezanedbatelnou příměs v podobě Gaussovského svazku. Tuto příměs lze odstranit tak, že se na SLM promítne vzorek doplněný o difrakční mřížku. Výsledný vzorek, vidlicovitý hologram, odráží LG svazek do jiného směru než Gaussovskou příměs.
Data
Font Treball propi
Autor JozumBjada

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
w:ca:Creative Commons
reconeixement compartir igual
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
Sou lliure de:
  • compartir – copiar, distribuir i comunicar públicament l'obra
  • adaptar – fer-ne obres derivades
Amb les condicions següents:
  • reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
  • compartir igual – Si modifiqueu, transformeu, o creeu a partir del material, heu de distribuir les vostres contribucions sota una llicència similar o una de compatible amb l'original.

Source code

This animation was created using Wolfram language 12.0.0 for Microsoft Windows (64-bit) (April 6, 2019). The source code follows (formatted as a .wl package file).

(* ::Package:: *)

(* ::Title:: *)
(*OAM beams created by SLM*)


(* ::Subtitle:: *)
(*Animation demonstrating the generation of orbital angular momentum (OAM) beams using spatial light modulator (SLM)*)


(* ::Chapter::Closed:: *)
(*Auxiliary routines and constants*)


(* ::Input::Initialization:: *)
{pt1,pt2,pt3,pt4}={{-1,-1,0},{0,0,0},{.5,-1.5,0},1.12{1,-1,0}};
{rad,speed,finalStageIdx}={0.2,0.1,16};
arrowFun[pts_,col_:Orange]:={Thickness[0.005],Arrowheads[0.03],col,Arrow[BezierCurve[pts]]}
fadeFun[gr_,t_]:=gr/.{col_:>Blend[{col,White},t]/;ColorQ[col],img_Image:>Blend[{RemoveAlphaChannel[img,White],ConstantImage[White,ImageDimensions[img]]},t]}


(* ::Chapter:: *)
(*3D elements*)


(* ::Section::Closed:: *)
(*SLM*)


(* ::Input::Initialization:: *)
frame3D[w_,h_,d_,scale_]:=Module[{pts,coords,reg},
pts={##,-d/2}&@@@({{-w,-h},{w,-h},{w,h},{-w,h}}/2);
pts=Join[pts,TranslationTransform[{0,0,d}][pts],ScalingTransform[{scale,scale,1}][pts],TranslationTransform[{0,0,d}]@ScalingTransform[{.8,.8,1}][pts]];coords={{1,2,6,5},{2,3,7,6},{3,4,8,7},{4,1,5,8},{1,2,3,4},{5,6,7,8}};
reg=RegionDifference[Polyhedron[pts,coords],Polyhedron[pts,Map[Plus[#,8]&,coords,{2}]]];
reg
];


(* ::Input::Initialization:: *)
getSLM[tex_,w_:1,h_:.9,d_:.05,scale_:.8]:=Module[{pts},
pts={##,0}&@@@((1+scale)/2{{-w,-h},{w,-h},{w,h},{-w,h}}/2);
Rotate[#,\[Pi]/2,{1,0,0}]&@{Gray,EdgeForm[],frame3D[w,h,d,scale],Texture[Rotate[tex,-\[Pi]/2]],Polygon[pts,VertexTextureCoordinates->RotateRight[{{0,0},{1,0},{1,1},{0,1}}]]}
];


(* ::Section::Closed:: *)
(*Beams*)


(* ::Input::Initialization:: *)
tubeBeamFun[pt_,opacity_:.5,pt2_:pt2]:={CapForm["Square"],Glow[RGBColor[1, 0, 0]],RGBColor[1, 0.5, 0],JoinForm["Miter"],Opacity[opacity],Tube[{pt2,pt},rad]}


(* ::Input::Initialization:: *)
getHelix[k_:1]:=getHelix[k]=Module[{plot,helix,rad=rad},
plot=ParametricPlot3D[Evaluate[Table[{r Cos[2\[Pi]/k t+j 2\[Pi]/k],r Sin[2\[Pi] /k t+j 2\[Pi]/k],t},{j,0,Abs[k]-1}]],{t,0,1},{r,0,1},Mesh->None,PlotStyle->Orange,PlotPoints->If[k==1||k==-1,25,Automatic]];
plot=First[Cases[InputForm[plot],_GraphicsComplex,Infinity,1]];
helix=Scale[Translate[plot,Table[{0,0,0.8+i},{i,7}]],{0.8rad,0.8rad,0.2},{0,0,0}];
helix
]


(* ::Input::Initialization:: *)
helicalWavefrontFun[k_,t_,initpt_,finpt_]:=Module[{wfs,speed=2},
wfs=Rotate[getHelix[k],-Sign[k]speed t,{0,0,1}];
Translate[#,pt2]&@Rotate[wfs,{{0,0,1},finpt-initpt}]
]


(* ::Input::Initialization:: *)
(*disk=ResourceFunction["Disk3D"][{0,0,0},0.8rad,{{1,0,0},{0,0,1}}];*)
disk=BSplineSurface[{{{-0.16,0.,0.},{-0.16,0.,-0.16},{0.,0.,-0.16}},{{-0.16,0.,0.16},{0.0178,0.,0.},{0.16,0.,-0.16}},{{0.,0.,0.16},{0.16,0.,0.16},{0.16,0.,0.}}},SplineKnots->{{0,0,0,1,1,2},{0,0,0,1,1,2}},SplineWeights->{{1,1/Sqrt[2],1},{1/Sqrt[2],1,1/Sqrt[2]},{1,1/Sqrt[2],1}}];


(* ::Input::Initialization:: *)
flatWavefrontFun[t_,initpt_,finpt_,offset_:0,opacity_:.5,lenvec_:1]:=Module[{wfs,len=1.5,step,offsets,wfnum=8},
step=(*len*)1.1/wfnum;
If[lenvec==0,Return[{}]];
offsets=(offset+Mod[speed t+#,len])&/@Range[0,lenvec len,step];
wfs=Translate[disk,{0,#,0}&/@offsets];
{Orange,EdgeForm[Opacity[Rescale[opacity ,{0,.5},{0,1}]0.9,Red]],Opacity[opacity],Translate[#,initpt]&@Rotate[wfs,{{0,1,0},finpt-initpt}]}
]


(* ::Input::Initialization:: *)
ptrot[tloc_]:=RotationTransform[Rescale[tloc,{0,1},{0,-VectorAngle[pt3,pt4]}],{pt3,pt4},pt2][pt4];
flatFrontFun[tglob_,op_:0.8]:=flatWavefrontFun[tglob,pt2,pt4,0.4,op];
beamsFun[k_][tglob_]:={tubeBeamFun[pt4],flatFrontFun[tglob],If[k=!=None,helicalWavefrontFun[k,tglob,pt2,pt4],Nothing]};
beamsFun2[k_][tglob_]:={tubeBeamFun[pt4,.2],tubeBeamFun[pt3],flatWavefrontFun[tglob,pt2,pt4,0.45,.2],helicalWavefrontFun[k,tglob,pt2,pt3]};


(* ::Input::Initialization:: *)
getBeams[stage_,tloc_,tglob_]:=Module[{list,speed=speed,incbeam,incwavefronts},

list={
{tubeBeamFun[pt2+Clip[2tloc-1,{0,1}](pt4-pt2)],flatWavefrontFun[tglob,pt2,pt4,0.4,0.5,Clip[2tloc-1,{0,1}]]},
beamsFun[None][tglob],
beamsFun[1][tglob],
beamsFun[2][tglob],
beamsFun[-2][tglob],
beamsFun[-1][tglob],
beamsFun[None][tglob],
{tubeBeamFun[pt4,.2],tubeBeamFun[ptrot[tloc]],flatWavefrontFun[tglob,pt2,ptrot[tloc],0.35,0.8],flatFrontFun[tglob,0.2]},
{tubeBeamFun[pt4,.2],tubeBeamFun[pt3],flatWavefrontFun[tglob,pt2,pt3,0.35,0.8],flatFrontFun[tglob,0.2]},
beamsFun2[1][tglob],
beamsFun2[1][tglob],
beamsFun2[2][tglob],
beamsFun2[-2][tglob],
beamsFun2[-1][tglob],
beamsFun2[1][tglob],
beamsFun2[1][tglob]
};
incbeam=tubeBeamFun[If[stage==1,pt1+Clip[2tloc,{0,1}](pt2-pt1),pt2],.5,pt1];
incwavefronts=flatWavefrontFun[tglob,pt1,pt2,0,0.5,If[stage==1,Clip[2tloc,{0,1}],1]];
Join[{incbeam,incwavefronts},list[[stage]]]
]


(* ::Chapter:: *)
(*2D elements*)


(* ::Section::Closed:: *)
(*Side slide*)


(* ::Input::Initialization:: *)
slideAsideFun[times_,funs_,def_:{}]:=Module[{aux,x},
aux=MapThread[{#1[Rescale[x,{#2,#3},{0,1}]],x<#3}&,{funs,times,Append[Rest[times],1]}];
With[{p=Piecewise[aux,def]/.x->#},p&]
];


(* ::Input::Initialization:: *)
slidePics[times_,pics_,ipos_]:=Module[{aux,x,funs,u,pos=Identity[ipos],def},

funs=MapThread[Function[{u},{Translate[#,#2+u(#3-#2)]}]&,{pics,pos,Append[Rest[pos],Last[pos]]}];
def=Translate[Last[pics],Last[pos]];
slideAsideFun[times,funs,def]
];


(* ::Input::Initialization:: *)
slidePicsAccum[itimes_,pauses_,ipics_,ipos_]:=Module[{aux,x,funs,u,pos,def,pics=FoldList[Append,ipics],times},

times=Riffle[itimes,itimes+pauses];
pics=Riffle[pics,pics];
pos=Riffle[ipos,ipos];

If[Last[pauses]==0,{times,pics,pos}=Most/@{times,pics,pos}];
slidePics[times,pics,pos]
];


(* ::Input::Initialization:: *)
slideAsideTwo[itimes_,pauses_,tfade1_,tfade2_,k1_,k2_,k3_,finpos_:-1]:=Module[{slideTwo,gr1,grMid,gr2,gr3},

gr1=If[k1===None,{},texFun[texSmoothFun[k1],{0,0}]];
grMid=Text[Style["\[Rule]",40,FontColor->Black],{-finpos/2,0}];
gr2=texFun[texSmoothFun[k2],{-finpos,0}];
gr3=texFun[texSmoothFun[k3],{-finpos,0}];

slideTwo=slidePicsAccum[itimes,pauses,{{Translate[#,{finpos,0}]&@gr2},{grMid,gr3}},{{.25,1.5},{.25,1.5}+{finpos,0}}];

Piecewise[{
{Translate[#,{.25,1.5}+{finpos,0}]&@{fadeFun[{gr1,If[k1===None,{},grMid]},Rescale[#,{0,tfade1},{0,1}]],gr2},#<tfade1},
{texFun[texSmoothFun[k2],{.25,1.5}],#<tfade2},
{slideTwo[Rescale[#,{tfade2,1},{0,1}]],True}
}]&
]


(* ::Section::Closed:: *)
(*Textures*)


(* ::Input::Initialization:: *)
texFun[tex_,pos_,pars___]:={Texture[tex],pars,EdgeForm[],Polygon[TranslationTransform[pos][0.6{{-1,-1},{1,-1},{1,1},{-1,1}}/2],VertexTextureCoordinates->{{0,0},{1,0},{1,1},{0,1}}]}


(* ::Input::Initialization:: *)
getHologram[charge_,grating_:0,disk_:True,colorFun_:GrayLevel]:=getHologram[charge,grating,disk,colorFun]=Module[{slope,lim=2.5,plotPoints=70,imgSize=200},
slope=Rescale[grating,{0,1},{0,12}];
If[charge==0&&grating==0&&Not@disk,
ConstantImage[Gray,{imgSize,imgSize}]
,
DensityPlot[Evaluate[Mod[slope y+Arg[Exp[-I charge ArcTan[-x,y]]],2\[Pi],-\[Pi]]],{y,-lim,lim},{x,-lim,lim},
Exclusions->(#1<=0&&#2==0&),PlotPoints->If[grating>0,2plotPoints,plotPoints],PlotRangePadding->None,
Frame->None,ColorFunction->colorFun,MaxRecursion->Automatic,RegionFunction->If[disk,(#1^2+#2^2<=lim^2&),True],ImageSize->imgSize]
]
];
orangeLevel=Blend[{Orange,Black},#]&;


(* ::Input::Initialization:: *)
slidingHolos=With[{opos={.25,1.5}},
slidePicsAccum[{0,0.5,0.95},{0.02,0.02,0},
{
{texFun[texGratingFun[1],opos]},
{Text[Style["+",40,FontColor->Black],opos+{0.5,0}],texFun[texSmoothFun[1],opos+{1,0}]},
{Text[Style["=",40,FontColor->Black],opos+{1.5,0}],texFun[texSLM[1],opos+{2,0}]}
}
,{{0,0},{-1,0},{-2,0}}]
];


(* ::Input::Initialization:: *)
sumHolo[k_]:=With[{opos={.25,1.5}+{-2,0}},
{
{texFun[texGratingFun[1],opos]},
{Text[Style["+",40,FontColor->Black],opos+{0.5,0}],texFun[texSmoothFun[k],opos+{1,0}]},
{Text[Style["=",40,FontColor->Black],opos+{1.5,0}],texFun[texSLM[k],opos+{2,0}]}
}
];


(* ::Input::Initialization:: *)
texSLM[k_]:=texSLM[k]=Rasterize[getHologram[k,1,False],Background->None]
texGratingFun[n_]:=texGratingFun[n]=Rasterize[getHologram[0,n,False],Background->None]
texSmoothFun[k_]:=texSmoothFun[k]=Image@getHologram[k,0,False];
texOrange[k_]:=texOrange[k]=Rasterize[getHologram[k,0,True,Blend[{Orange,Black},#]&],Background->None]


(* ::Input::Initialization:: *)
texOrangePlusGauss[k_]:=texOrangePlusGauss[k]=Rasterize[Graphics[{
Inset[texOrange[0],ImageScaled[{.6,.4}],ImageScaled[{1,1}/2],1.5],
Inset[texOrange[k],ImageScaled[{.4,.6}],ImageScaled[{1,1}/2],1.5]
}],Background->None]


(* ::Section::Closed:: *)
(*Labels*)


(* ::Input::Initialization:: *)
getTextures[stage_,t_]:=Module[{list},
list={texSmoothFun[0],texSmoothFun[0],texSmoothFun[1],texSmoothFun[2],texSmoothFun[-2],texSmoothFun[-1],texSmoothFun[0],texGratingFun[t],texGratingFun[1],texSLM[1],texSLM[1],texSLM[2],texSLM[-2],texSLM[-1],texSLM[1],texSLM[1]};
list[[stage]]
]


(* ::Input::Initialization:: *)
slide[k1_,k2_,k3_]:=slideAsideTwo[{0,.5},{0.02,0 0.02},.3,.85,k1,k2,k3];
textlab[text_]:=Text[Framed[Style[text,50,FontColor->Black,FontFamily->"Times"],FrameStyle->Black],{.8,1.5}];
textlab[text_,tt_]:=fadeFun[textlab[text],tt];
tor2[k_,addGauss_:False]:=texFun[If[addGauss,texOrangePlusGauss[k],texOrange[k]],{.85,-.9}];
tor3[k_]:=texFun[texOrange[k],{-0.5,-.9}];


(* ::Input::Initialization:: *)
getLabels[stage_,t_,tex_]:=Module[{list,
arr1=arrowFun[{{-1.917,0.638},{-1.817,0.825},{-1.53,0.845},{-1.383`,0.6583`}}],
arr3=arrowFun[{{-0.8044`,-0.61`},{-0.8489`,-0.3789`},{-0.6978`,-0.1389`},{-0.4933`,-0.1389`}}],
arr2=arrowFun[{{1.151`,-0.5878`},{1.302`,-0.4056`},{1.053`,-.2}}],
tf=texFun[tex,{.25,1.5},EdgeForm[{Thick,Black}]]},

list={
{arr1,tf},
{arr1,arr2,tor2[0],slide[None,0,1][t]},
{arr1,arr2,tor2[1,True],textlab["+1",t],slide[0,1,2][t]},
{arr1,arr2,tor2[2,True],textlab["+2",t],slide[1,2,-2][t]},
{arr1,arr2,tor2[-2,True],textlab["-2",t],slide[2,-2,-1][t]},
{arr1,arr2,tor2[-1,True],textlab["-1",t],slide[-2,-1,0][t]},
{arr1,arr2,tor2[0],tf},
{arr1,arr2,tor2[0],tf},
{arr1,arr2,arr3,tor2[0],tor3[0],slidingHolos[t]},
{arr1,arr2,arr3,tor2[0],tor3[1],sumHolo[1],textlab["+1"]},
{fadeFun[{arr1,arr2,arr3,tor2[0]},t],tor3[1],sumHolo[1],textlab["+1"]},
{sumHolo[2],textlab["+2"],tor3[2]},
{sumHolo[-2],textlab["-2"],tor3[-2]},
{sumHolo[-1],textlab["-1"],tor3[-1]},
{fadeFun[sumHolo[+1],t],tf,textlab["+1"],tor3[1]},
fadeFun[{tf,textlab["+1"],tor3[1]},t]
};
list=Join[{texFun[texOrange[0],{-2.1,.3}]},#]&/@list;

list[[stage]]
]


(* ::Chapter:: *)
(*Composition*)


(* ::Section::Closed:: *)
(*Scene*)


(* ::Input::Initialization:: *)
scene[stage_,t_,tglob_]:=Module[{incbeam,reflbeam,reflbeam2,wavefrontsIn,wavefronts1,wavefronts2,gr3D,tex,texOut,texOut2,gr,imgRes=50,img},

tex=getTextures[stage,t];
gr3D=Graphics3D[{getSLM[tex],getBeams[stage,t,tglob]},
Lighting->{{"Point",White,2{-1,-1,0}},{"Point",White,2{1,-1,0}},{"Point",White,2{0,0,1}}},Boxed->False,ViewVertical->{0,0,1},ViewVector->{{10,-17,8},{0,0,0}},PlotRange->{{-1.5,1.5},{-1.8,0.2},{-1,1}}
];
gr=Graphics[{Inset[gr3D,{.25,.5},ImageScaled[{1,1}/2],4],getLabels[stage,t,tex]},ImageSize->900,PlotRange->{{-2.5,1.5},{-1.5,1.9}}];

(*rasterization is done basically only because of the very last stage where the whole scene fades away, with Graphics is it more complicated than with Image*)
img=Rasterize[gr,ImageResolution->imgRes];
If[stage==finalStageIdx,Blend[{img,ConstantImage[White,ImageDimensions[img]]},t],img]
]


(* ::Input:: *)
(*(*Manipulate[scene[stage,t,tg],{stage,1,16,1,Appearance\[Rule]"Open",ControlsRendering\[Rule]"Generic"},{{t,0.6},0,1,Appearance\[Rule]"Open",ControlsRendering\[Rule]Automatic},{tg,0,1,Appearance\[Rule]"Open"}]*)*)


(* ::Section::Closed:: *)
(*Generation and export*)


(* ::Input::Initialization:: *)
animation[t_]:=Module[{stage,tloc,num=finalStageIdx},
{stage,tloc}=QuotientRemainder[t,1/num];
stage+=1;
tloc*=num ;
If[stage==num+1,stage-=1;tloc=1];
tloc=Clip[1.2tloc,{0,1}];

scene[stage,tloc,15t]
]


(* ::Input:: *)
(*(*Manipulate[animation[t],{t,0,1}]*)*)


(* ::Input:: *)
(*numsamples=200-1;*)
(*frames=Table[animation[t],{t,0,1,1/numsamples}];*)
(*{time,frames}=AbsoluteTiming[Rasterize[#,ImageSize->500]&/@frames];*)


(* ::Input:: *)
(*time*)


(* ::Input:: *)
(*filename="anim.gif";*)
(*SetDirectory[NotebookDirectory[]]*)
(*SystemOpen@Export[filename,frames,AnimationRepetitions->Infinity,"DisplayDurations"->.25]*)

Llegendes

Afegeix una explicació d&#039;una línia del que representa aquest fitxer
Generation of OAM beams using a spatial light modulator

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual20:32, 20 gen 2022Miniatura per a la versió del 20:32, 20 gen 2022503 × 428 (5,6 Mo)wikimediacommons>JozumBjadaCross-wiki upload from cs.wikipedia.org

La pàgina següent utilitza aquest fitxer: