Fitxer:Inclinedthrow.gif

De testwiki
Salta a la navegació Salta a la cerca
Inclinedthrow.gif (400 × 288 píxels, mida del fitxer: 374 Ko, tipus MIME: image/gif, en bucle, 102 fotogrames, 10 s)

Aquest fitxer prové de Wikimedia Commons i pot ser usat per altres projectes. La descripció de la seva pàgina de descripció es mostra a continuació.

Resum

Descripció
English: Trajectories of three objects thrown at the same angle (70°). The black object doesn't experience any form of drag and moves along a parabola. The blue object experiences Stokes' drag, and the green object Newton drag.
Data
Font Treball propi
Autor AllenMcC.
Altres versions Inclinedthrow2.gif
GIF genesis
InfoField
 Aquesta GIF imatge rasteritzada ha estat creada amb Matplotlib
Codi font
InfoField

Python code

#!/usr/bin/python3
# -*- coding: utf8 -*-

import os
import inspect
from math import *
import numpy as np
from scipy.integrate import odeint
from scipy.optimize import newton
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import animation

# settings
mpl.rcParams['path.snap'] = False
fname = 'inclinedthrow'
size = 400, 288
l, w, b, h = 22.5/size[0], 1-23/size[0], 22.5/size[1], 1-23/size[1]
nframes = 102
delay = 8
lw = 1.
ms = 6
c1, c2, c3 = "#000000", "#0000ff", "#007100"

def projectile_motion(g, mu, pot, xy0, vxy0, tt):
    # use a four-dimensional vector function vec = [x, y, vx, vy]
    def dif(vec, t):
        # time derivative of the whole vector vec
        v = hypot(vec[2], vec[3])
        vxrel, vyrel = vec[2] / v, vec[3] / v
        return [vec[2], vec[3], -mu * v**pot * vxrel, -g - mu * v**pot * vyrel]

    # solve the differential equation numerically
    vec = odeint(dif, [xy0[0], xy0[1], vxy0[0], vxy0[1]], tt)
    return vec[:, 0], vec[:, 1], vec[:, 2], vec[:, 3]  # return x, y, vx, vy

g = 1.
theta  = radians(70)
v0 = sqrt(g/sin(2*theta))
vinf = 2.1
# use identical terminal velocity vinf for both types of friction
mu_stokes = g / vinf**1
mu_newton = g / vinf**2
x0, y0 = 0.0, 0.0
vx0, vy0 = v0 * cos(theta), v0 * sin(theta)

T = newton(lambda t: projectile_motion(g, 0, 0, (x0, y0), (vx0, vy0), [0, t])[1][1], 2*vy0/g)
nsub = 10
tt = np.linspace(0, T * nframes / (nframes - 1), (nframes - 1) * nsub + 1)

traj_free = projectile_motion(g, 0, 0, (x0, y0), (vx0, vy0), tt)
traj_stokes = projectile_motion(g, mu_stokes, 1, (x0, y0), (vx0, vy0), tt)
traj_newton = projectile_motion(g, mu_newton, 2, (x0, y0), (vx0, vy0), tt)

def animate(nframe, saveframes=False):
    print(nframe, '/', nframes)
    t = T * float(nframe) / nframes
    
    plt.clf()
    fig.gca().set_position((l, b, w, h))
    fig.gca().set_aspect("equal")
    plt.xlim(0, 1)
    plt.ylim(0, (h*size[1]) / (w*size[0]))
    plt.xticks([]), plt.yticks([])
    plt.xlabel('Distance', size=12)
    plt.ylabel('Height', size=12)
    
    plt.plot(traj_free[0][:nframe*nsub+1], traj_free[1][:nframe*nsub+1],
        '-', lw=lw, color=c1)
    plt.plot(traj_free[0][nframe*nsub], traj_free[1][nframe*nsub],
        'ok', color=c1, markersize=ms, markeredgewidth=0)
    
    plt.plot(traj_stokes[0][:nframe*nsub+1], traj_stokes[1][:nframe*nsub+1],
        '-', lw=lw, color=c2)
    plt.plot(traj_stokes[0][nframe*nsub], traj_stokes[1][nframe*nsub],
        'ok', color=c2, markersize=ms, markeredgewidth=0)
    
    plt.plot(traj_newton[0][:nframe*nsub+1], traj_newton[1][:nframe*nsub+1],
        '-', lw=lw, color=c3)
    plt.plot(traj_newton[0][nframe*nsub], traj_newton[1][nframe*nsub],
        'ok', color=c3, markersize=ms, markeredgewidth=0)
    
    if saveframes:
        # export frame
        dig = int(ceil(log10(nframes)))
        fsavename = ('frame{:0' + str(dig) + '}.svg').format(nframe)
        fig.savefig(fsavename)
        with open(fsavename) as f: content = f.read()
        content = content.replace('pt"', 'px"').replace('pt"', 'px"')
        with open(fsavename, 'w') as f: f.write(content)

fig = plt.figure(figsize=(size[0]/72., size[1]/72.))

os.chdir(os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))))
for i in range(nframes):
    animate(i, True)
os.system('convert -loop 0 -delay ' + str(delay) + ' frame*.svg +dither ' + fname + '.gif')
# keep last frame for two seconds
os.system('gifsicle -k32 --color-method blend-diversity -b ' + fname + '.gif -d' + str(delay) + ' "#0-' + str(nframes-2) + '" -d200 "#' + str(nframes-1) + '"')
for i in os.listdir('.'):
    if i.startswith('frame') and i.endswith('.svg'):
        os.remove(i)

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
w:ca:Creative Commons
reconeixement compartir igual
Aquest fitxer està subjecte a la llicència Creative Commons Reconeixement-CompartirIgual 3.0 No adaptada.
Sou lliure de:
  • compartir – copiar, distribuir i comunicar públicament l'obra
  • adaptar – fer-ne obres derivades
Amb les condicions següents:
  • reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
  • compartir igual – Si modifiqueu, transformeu, o creeu a partir del material, heu de distribuir les vostres contribucions sota una llicència similar o una de compatible amb l'original.

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual17:10, 21 oct 2020Miniatura per a la versió del 17:10, 21 oct 2020400 × 288 (374 Ko)wikimediacommons>Geek3adjusted friction coefficients such to make terminal velocity of both trajectories equal. In this case, the Newton projectile moves further.

Les 2 pàgines següents utilitzen aquest fitxer: