Fitxer original(fitxer SVG, nominalment 1.083 × 923 píxels, mida del fitxer: 104 Ko)
Aquest fitxer prové de Wikimedia Commons i pot ser usat per altres projectes.
La descripció de la seva pàgina de descripció es mostra a continuació.
Resum
DescripcióLagrange points2.svg
English: A contour plot of the effective potential of a two-body system called the Jacobian potential in the restricted three-body formation of a rotating dynamical system (the Sun and Earth here), showing the 5 Lagrange points.
Això és una imatge retocada, cosa que vol dir que ha estat alterada digitalment de la seva versió original. Modificacions: transformed into svg. L'original es pot veure a: Lagrange points.jpg: . Modificacions fetes per Xander89.
Llicència
Xander89, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
compartir – copiar, distribuir i comunicar públicament l'obra
adaptar – fer-ne obres derivades
Amb les condicions següents:
reconeixement – Heu de donar la informació adequada sobre l'autor, proporcionar un enllaç a la llicència i indicar si s'han realitzat canvis. Podeu fer-ho amb qualsevol mitjà raonable, però de cap manera no suggereixi que l'autor us dóna suport o aprova l'ús que en feu.
https://creativecommons.org/licenses/by/3.0CC BY 3.0 Creative Commons Attribution 3.0 truetrue
Registre original de càrregues
This image is a derivative work of the following images:
2007-02-05T15:12:14Z EnEdC 489x419 (63271 Bytes) also move L4, L5 out
2006-06-29T00:37:13Z EnEdC 489x419 (63290 Bytes) Moved L3 left slightly.
2006-03-31T17:53:47Z Mlm42 479x419 (49888 Bytes) A contour plot of the effective potential of a two-body system. It clearly shows the 5-lagrange points.
Afegeix una explicació d'una línia del que representa aquest fitxer
Effective potential contour map (not to scale) of Sun-Earth system: L1, L2, L3 are unstable saddle points; L4, L5 are maxima but stable because of the Coriolis effect
{{Information |Description=A contour plot of the effective potential of a two-body system. (the Sun and Earth here), showing the 5 '''Lagrange points'''. An object in free-fall would trac