Fitxer:Prime number theorem ratio convergence.svg

De testwiki
Salta a la navegació Salta a la cerca
Fitxer original (fitxer SVG, nominalment 250 × 160 píxels, mida del fitxer: 87 Ko)

Aquest fitxer prové de Wikimedia Commons i pot ser usat per altres projectes. La descripció de la seva pàgina de descripció es mostra a continuació.

Resum

Descripció
English: A plot showing how two estimates described by the prime number theorem, and converge asymptotically towards , the number of primes less than x. The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The former estimate converges extremely slowly, while the latter has visually converged on this plot by 108. Source used to generate this chart is shown below.
Data
Font Treball propi
Autor Dcoetzee
SVG genesis
InfoField
 El codi font d'aquest SVG és vàlid.
 Aquesta imatge vectorial ha estat creada amb Mathematica
  This chart uses embedded text that can be easily translated using a text editor.

Llicència

Jo, el titular dels drets d'autor d'aquest treball, el public sota la següent llicència:
Creative Commons CC-Zero L'ús d'aquest fitxer és regulat sota les condicions de Creative Commons de CC0 1.0 lliurament al domini públic universal.
La persona que ha associat un treball amb aquest document ha dedicat l'obra domini públic, renunciant en tot el món a tots els seus drets de d'autor i a tots els drets legals relacionats que tenia en l'obra, en la mesura permesa per la llei. Podeu copiar, modificar, distribuir i modificar l'obra, fins i tot amb fins comercials, tot sense demanar permís.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):

(* Sample both functions at 600 logarithmically spaced points between \
1 and 2^40 *)
base = N[E^(24 Log[10]/600)];
ratios = Table[{Round[base^x], 
    N[PrimePi[Round[base^x]]/(base^x/(x*Log[base]))]}, {x, 1, 
    Floor[40/Log[2, base]]}];
ratiosli = 
  Table[{Round[base^x], 
    N[PrimePi[
       Round[base^x]]/(LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[Log[base, 2]], Floor[40/Log[2, base]]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
ratios2 = 
  Join[ratios, 
   Map[{#[[1]], N[#[[2]]]/(#[[1]]/(Log[#[[1]]]))} &, LargePiPrime]];
ratiosli2 = 
  Join[ratiosli, 
   Map[{#[[1]], N[#[[2]]]/(LogIntegral[#[[1]]] - LogIntegral[2])} &, 
    LargePiPrime]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[LogLinearPlot[1, {x, 1, 10^24}, PlotRange -> {0.8, 1.25}], 
 ListLogLinearPlot[{ratios2, ratiosli2}, Joined -> True], 
 LabelStyle -> FontSize -> 14]

LaTeX source for labels:

$$ \left.{\pi(x)}\middle/{\frac{x}{\ln x}}\right. $$
$$ \left.{\pi(x)}\middle/{\int_2^x \frac{1}{\ln t} \mathrm{d}t}\right. $$

These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Llegendes

Afegeix una explicació d'una línia del que representa aquest fitxer

Elements representats en aquest fitxer

representa l'entitat

Historial del fitxer

Cliqueu una data/hora per veure el fitxer tal com era aleshores.

Data/horaMiniaturaDimensionsUsuari/aComentari
actual14:07, 21 març 2013Miniatura per a la versió del 14:07, 21 març 2013250 × 160 (87 Ko)wikimediacommons>DcoetzeeChange n to x to match article

La pàgina següent utilitza aquest fitxer: