Topologia quocient

En matemàtiques, la topologia quocient és una topologia definida sobre el conjunt quocient generat per una relació d'equivalència sobre un espai topològic.
Definició
Siga un espai topològic i una relació d'equivalència sobre . El conjunt quocient és el conjunt de les classes d'equivalència dels elements de :
Els conjunts oberts que conforman l'anomenada topologia quocient sobre són els conjunts de las classes d'equivalència les unions de les quals són conjunts oberts en :
Definició equivalent: sigui l'aplicació projecció donada per , aleshores es defineixen els oberts de com els conjunts tals que és obert en .
Propietats
- L'aplicació que envia a cada element a la seva classe d'equivalència corresponent és continua.[1]
- Siguen la projecció i . L'aplicació és continua si, i només si, la composició és continua.[1]
Exemples
- El tor com a conjunt quocient:[1] Sobre es defineix la relació d'equivalència i . L'espai quocient és homeomorf a un tor.
- La cinta de Möbius com a conjunt quocient:[1] Sobre es defineix la relació d'equivalència . L'espai quocient és homeomorf a una cinta de Möbius.
- La ampolla de Klein com a conjunt quocient:[2] Sobre es defineix la relació d'equivalència i . L'espai quocient és homeomorf a una ampolla de Klein (es difícil de visualitzar ja que no és homeomorf a un subespai de ).
- L'esfera com a conjunt quocient:[3] Sobre es defineix la relació d'equivalència per a de la frontera. L'espai quocient corresponent és homeomorf a una esfera.
Vegeu també
Bibliografia
- Robles Corbalá Carlos Alberto, "Topología general", Universitat de Sonora.
- Plantilla:MathWorld
- Plantilla:PlanetMath


