Equació d'Adams-Williamson

De testwiki
Salta a la navegació Salta a la cerca

LPlantilla:'equació d'Adams-Williamson, que porta el nom de L. H. Adams i E. D. Williamson, és una equació diferencial que s'utilitza per determinar la densitat en funció del radi, que s'utilitza més sovint per determinar la relació entre les velocitats de les ones sísmiques i la densitat de l'interior de la Terra.[1] Tenint en compte la densitat mitjana de roques a la superfície de la Terra, i els perfils de les velocitats de l'ona P i l'ona S en funció de la profunditat, es pot predir com la densitat augmenta amb la profunditat.[2] Assumeix que la compressió és adiabàtica i que la Terra és esfèrica simètrica, homogènia i en equilibri hidroestàtic. També es pot aplicar a capes esfèriques amb aquesta propietat. És una part important dels models de l'interior de la Terra, com ara el model de referència preliminar de la Terra (PREM).[3][4]

Història

Williamson i Adams van desenvolupar per primera vegada la teoria el 1923. Van concloure que «per tant, no és possible explicar l'alta densitat de la Terra a partir de només la compressió. L'interior dens no pot consistir en roques ordinàries comprimides en un volum petit; ens recolzem en l'única alternativa raonable, és a dir, la presència d'un material més pesat, probablement algun metall, que, per jutjar per la seva abundància a l'escorça de la Terra, en meteorits i al sol, és probablement ferro».[3]

Teoria

Els dos tipus d'ones sísmiques són les «ones compressives» (ones P) i «ones de cisallament» (ones S). Ambdues tenen velocitats determinades per les propietats elàstiques del mitjà que travessen, en particular el mòdul de compressibilitat K, el mòdul de cisallament μ, i la densitat ρ. En termes d'aquests paràmetres, la velocitat de l'ona P (vp) i la velocitat de l'ona S (vs) són:

vp=K+(4/3)μρvs=μρ.

Aquestes dues velocitats es poden combinar en un paràmetre sísmic

Φ=vp243vs2=Kρ. (equació 1)

La definició del mòdul de compressibilitat,

K=VdPdV,

és equivalent a:

K=ρdPdρ. (equació 2)

Suposem que una regió a una distància r del centre de la Terra es pot considerar un fluid en equilibri hidroestàtic, i és actuada per l'atracció gravitacional de la part de la Terra que està a sota d'ella i la pressió de la part que hi ha sobre ella. Suposeu també que la compressió és adiabàtica (per tant, la dilatació tèrmica no contribueix a variacions de densitat). La pressió P(r) varia amb r com

dPdr=ρ(r)g(r), (equació 3)

on g(r) és l'acceleració gravitacional al radi r.[3]

Si combinen les equacions 1, 2 i 3, obtenim l'equació d'Adams-Williamson:

dρdr=ρ(r)g(r)Φ(r).

Aquesta equació es pot integrar per obtenir

ln(ρρ0)=r0rg(r)Φ(r)dr,

on r0 és el radi a la superfície de la Terra i ρ0 és la densitat a la superfície. Donat ρ0 i els perfils de les velocitats de l'ona P i ona S, la dependència radial de la densitat es pot determinar mitjançant la integració numèrica.[3]

Referències

Plantilla:Referències

Plantilla:Autoritat