Moment angular total

De testwiki
Salta a la navegació Salta a la cerca

En mecànica quàntica, el nombre quàntic del moment angular total parametritza el moment angular total d'una partícula donada, ja que combina el seu moment angular orbital i el moment angular intrínsec, és a dir el seu espín.

El moment angular total correspon a l'invariant Casimir de l'àlgebra de Lie SO(3) del grup de rotació tridimensional.

Prenent s com el vector moment angular d'espín d'una partícula, i el seu vector moment angular orbital, es defineix el vector moment angular total j com:

𝐣=𝐬+.

El nombre quàntic associat és el nombre quàntic principal del moment angular total j. Aquest nombre pot prendre valors enters en el següent rang:[1]

|s|j+s

on és el nombre quàntic azimutal i s és el nombre quàntic d'espín, que parametritzen el moment angular orbital i d'espín.

La relació entre el vector moment angular total j i el nombre quàntic del moment angular total j ve donat per la relació (vegeu nombre quàntic del moment angular)

𝐣=j(j+1)

La component z del vector ve donat per

jz=mj

on mj és el nombre quàntic secondari del moment angular total, i és la constant de Planck reduïda. Aquesta pren valors enters des de −j fins a +j. Això són 2j + 1 valors totals diferents de mj.

Referències

Plantilla:Referències

Bibliografia