Teorema de Wolstenholme
En teoria de nombres, el teorema de Wolstenholme, en honor del matemàtic britànic Joseph Wolstenholme qui el va enunciar per primera vegada el 1862, és un teorema que permet relacionar determinats nombres primers amb els nombres de Bernoulli.[1]
Definició
Si és un nombre primer i , aleshores el numerador del nombre harmònic (p-1)-èsim és divisible per :
i el numerador del nombre harmònic generalitzat
Aquests numeradors de es denominen nombres de Wolstenholme.
Això implica que el coeficient binomial
Exemple
Per , el seu nombre harmònic seria:
i el seu numerador
i el seu nombre harmònic generalitzat seria:
i el seu numerador
Nombres primers de Wolstenholme
Es diu que un nombre primer és de Wolstenholme si, i només si,
Només es coneixen dos nombres primers de Wolstenholme: i Plantilla:OEIS. A més, l'any 2007, McIntosh i Roettger van demostrar que si n'existeix algun altre, ha de ser més gran que .[4]
Referències
Bibliografia
Enllaços externs
- ↑ Plantilla:Versaleta, pàgines 6-7.
- ↑ Plantilla:Versaleta, pàgina 33.
- ↑ Plantilla:Versaleta, pàgina 475.
- ↑ Plantilla:Versaleta, pàgines 14-15.