Acció (matemàtiques)

De testwiki
Salta a la navegació Salta a la cerca

Plantilla:Vegeu

Donat un triangle equilàter, la rotació en sentit antihorari de 120° al voltant del centre del triangle aplica cada vèrtex del triangle en un altre vèrtex. El grup cíclic C₃ format per les rotacions de 0°, 120° i 240° actua sobre el conjunt dels tres vèrtexs.

En matemàtiques, un grup de simetria és una abstracció emprada per descriure les simetries d'un objecte. Una acció de grup formalitza la relació entre el grup i les simetries de l'objecte; relaciona cada element del grup amb una transformada particular de l'objecte.

En aquest cas, hom diu que el grup és un grup de permutacions (especialment si el conjunt és finit o no és un espai vectorial) o un grup de transformacions (sobretot si el conjunt és un espai vectorial i el grup actua com a transformacions lineals del conjunt). Una representació de permutacions d'un grup G és una representació de G com a grup de permutacions del conjunt (habitualment, si el conjunt és finit), i es pot descriure com a representació de grup de G mitjançant matrius permutació. És el mateix que una acció de grup de G sobre una base ordenada d'un espai vectorial.

Una acció de grup és una extensió del concepte de grup de simetria, en el qual tot element del grup "actua" com una transformació bijectiva (o "simetria") d'un conjunt donat, sense identificar-lo amb aquesta transformació. Això permet una descripció més comprensiva de les simetries d'un objecte, com un políedre, permetent que el mateix grup actuï sobre diferents conjunts de característiques, com el conjunt de vèrtexs, el conjunt d'arestes o el conjunt de cares del políedre.

Si G és un grup i X és un conjunt, llavors hom pot definir una acció de grup com un homomorfisme de grups h de G al grup simètric sobre X. L'acció assigna una permutació de X a cada element de grup, de tal manera que la permutació de X assignada a:

L'abstracció que donen les accions de grups és molt potent, perquè permet aplicar idees geomètriques a altres objectes més abstractes. Molts objectes matemàtics tenen accions de grups associades de manera natural. En particular, els grups poden actuar sobre altres grups, o fins i tot un grup pot actuar sobre ell mateix. A causa d'aquesta generalitat, la teoria d'accions de grup conté diversos teoremes d'ampli abast, com el teorema de l'estabilitzador d'òrbites, que es pot utilitzar per demostrar resultats complexos en diferents àmbits.

Definició

Si G és un grup i X és un conjunt, llavors una acció de grup (per l'esquerra) φ de G sobre X és una funció

φ:G×XX(g,x)φ(g,x)

que satisfà els dos Plantilla:Àncoraaxiomes següents (on denotem φ(g, x) com g.x):[1]

Identitat
Plantilla:Nowrap per a tot x de X. (Aquí, e denota l'element neutre del grup G.)
Compatibilitat
Plantilla:Nowrap per a qualssevol g, h de G i per a tot x de X. (Aquí, gh denota el resultat d'aplicar l'operació de grup de G als elements g i h.)

Hom diu que el grup G actua sobre X (per l'esquerra), i que el conjunt X és un G-conjunt (per l'esquerra).

A partir d'aquests dos axiomes, es pot deduir que per a qualsevol g de G, la funció que aplica xX en g.x és una funció bijectiva de X en X (i que té per inversa la funció que envia x a g−1.x). Per tant, una definició alternativa d'una acció del grup G sobre X pot ser amb un homomorfisme de grups de G en el grup simètric Sim(X) de totes les bijeccions de X en X.[2]

Anàlogament, hom pot definir una acció de grup per la dreta de G sobre X com una operació Plantilla:Nowrap que envia Plantilla:Nowrap a x.g i que satisfà els dos axiomes:

Identitat
Plantilla:Nowrap per a tot x de X.
Compatibilitat
Plantilla:Nowrap per a qualssevol g, h de G i per a tot x in X.

La diferència entre les accions per l'esquerra i per la dreta rau en l'ordre en el qual un producte com gh actua sobre x. Per a una acció per l'esquerra, primer actua h i després g, mentre que en una acció per la dreta, primer actua g i després h. Com que tenim Plantilla:Nowrap, es pot construir una acció per l'esquerra a partir d'una acció per la dreta, si es realitza una composició amb l'operació inversa del grup. Addicionalment, una acció per la dreta d'un grup G sobre X és equivalent a una acció per l'esquerra del seu grup oposat Gop sobre X.[nota 1] Per tant, podem considerar només les accions per l'esquerra, sense pèrdua de generalitat.

Definició alternativa

Es pot donar una altra definició d'acció de grups mitjançant l'ús de grups de simetria. Sigui G un grup, sigui X un conjunt, i sigui SX el grup de simetria de X, és a dir, el conjunt de totes les permutacions dels elements de X. Llavors hom diu que G actua sobre X si existeix un homomorfisme de grups de G a SX.

θ:GSXgσg.

Si existeix un tal homomorfisme, llavors les propietats d'identitat i compatibilitat són una conseqüència directa de les propietats dels homomorfismes de grups.

Identitat
θ(e) = ι. (θ aplica l'element neutre de G en la permutació identitat.)
Compatibilitat
σgh = θ(gh) = θ(g)θ(h) = σgσh. (θ respecta les dues operacions dels grups.)

Exemples

Tipus d'accions

Hom diu que una acció de G sobre X és:

Tota acció lliure sobre un conjunt no buit és fidel. Un grup G actua de manera fidel sobre X si i només si l'homomorfisme corresponent Plantilla:Nowrap té un nucli trivial. Així, per a una acció fidel, G se submergeix en un grup de permutacions sobre X; més específicament, G és isomorf a la seva imatge dins Sim(X).

L'acció de qualsevol grup G sobre si mateix per la multiplicació per l'esquerra és regular i, per tant, també és fidel. Com a conseqüència, tot grup es pot submergir en el grup simètric dels seus elements, Sim(G). Això es coneix com el teorema de Cayley.

Si G no actua de manera fidel sobre X, hom pot alterar fàcilment el grup per tal d'obtenir una acció fidel. Si definim Plantilla:Nowrap, llavors N és un subgrup normal de G; de fet, és el nucli de l'homomorfisme Plantilla:Nowrap. El grup quocient G/N actua de manera fidel sobre X si s'estableix Plantilla:Nowrap. L'acció original de G sobre X és fidel si i només si Plantilla:Nowrap.

Òrbites i estabilitzadors

En el compost de cinc tetràedres, el grup de simetria és el grup icosaèdric (rotacional) I d'ordre 60, mentre que l'estabilitzador d'un tetràedre escollit és el grup tetraèdric (rotacional) T d'ordre 12, i l'espai d'òrbites I/T (d'ordre 60/12 = 5) s'identifica de manera natural amb els 5 tetràedres – la classe lateral gT correspon a quin tetràedre envia g el tetràedre escollit.

Consideri's un grup G que actua sobre un conjunt X. LPlantilla:'òrbita d'un element x de X és el conjunt d'elements de X als quals x es pot aplicar per acció dels elements de G. L'òrbita de x es denota per G.x:

G.x={g.xgG}.

Per definició de grup, el conjunt d'òrbites de (punts x de) X sota l'acció de G formen una partició de X. La relació d'equivalència associada es defineix dient que Plantilla:Nowrap si i només si existeix un g de G tal que Plantilla:Nowrap. Les òrbites són, doncs, les classes d'equivalència d'aquesta relació; dos elements x i y són equivalents si i només si les seves òrbites són iguals, és a dir, Plantilla:Nowrap.

L'acció de grup és transitiva si i només si té una sola òrbita, és a dir, existeix un x de X tal que Plantilla:Nowrap. Equivalentment, si i només si Plantilla:Nowrap per a tot x de X.

El conjunt de totes les òrbites de X sota l'acció de G s'escriu X/G (o, menys freqüentment, G\X), i es diu que és el quocient de l'acció. En casos geomètrics es pot trobar com Plantilla:Àncoraespai d'òrbites, mentre que en casos algebraics s'acostuma a anomenar espai de Plantilla:Àncoracoinvariants, i s'escriu XG, per contrast amb els invariants (punts fixos), denotats per XG: els coinvariants són un quocient, mentre que els invariants són un subconjunt. Aquesta terminologia de coinvariants s'empra a bastament en cohomologia de grups i homologia de grups, que utilitzen la mateixa convenció de superíndexs i subíndexs.

Subconjunts invariants

Si Y és un subconjunt de X, hom escriu GY per referir-se al conjunt Plantilla:Nowrap. Hom diu que aquest subconjunt Y és invariant per G si Plantilla:Nowrap (la qual cosa és equivalent a Plantilla:Nowrap). En tal cas, G també opera sobre Y si es restringeix l'acció a Y. Es diu que el subconjunt Y és fix per G si Plantilla:Nowrap per a qualssevol g de G i y de Y. Tot subconjunt fix per G és invariant per G, però el recíproc no és cert.

Tota òrbita és un subconjunt invariant de X sobre el qual G actua de manera transitiva. L'acció de G sobre X és transitiva si i només si tots els elements són equivalents, en el sentit de què només hi ha una òrbita.

Un element G-invariant de X és un element Plantilla:Nowrap tal que Plantilla:Nowrap per a tot Plantilla:Nowrap. El conjunts d'aquests x se simbolitza per XG i hom diu que són els G-invariants de X. Quan X és un G-mòdul, XG és el 0-sim grup de cohomologia de G amb coeficients a X, i els grups de cohomologia superiors són els functors derivats del functor de G-invariants.

Punts fixos i subgrups estabilitzadors

Donats g de G i x de X tals que Plantilla:Nowrap, hom diu que x és un punt fix de g i que g fixa x.

Per a tot x de X, es defineix el subgrup estabilitzador de G respecte x (també anomenat grup d'isotropia) com el conjunt de tots els elements de G que fixen x:

Gx={gGgx=x}.

Això és un subgrup de G, però habitualment no és un subgrup normal. L'acció de G sobre X és lliure si i només si tots els estabilitzadors són trivials. El nucli N de l'homomorfisme Plantilla:Nowrap ve donat per la intersecció dels estabilitzadors Gx per a tot x de X. Si N és trivial, llavors hom diu que l'acció és fidel (o efectiva).

Siguin x i y dos elements de X, i sigui g un element del grup tal que Plantilla:Nowrap. Llavors els dos grups estabilitzadors Gx i Gy estan relacionats mitjançant Plantilla:Nowrap. Per demostrar-ho, notem que, per definició, Plantilla:Nowrap si i només si Plantilla:Nowrap. Aplicant g−1 a ambdós costats de la igualtat obtenim Plantilla:Nowrap; és a dir, Plantilla:Nowrap.

Això vol dir que els estabilitzadors d'elements de la mateixa òrbita són conjugats l'un de l'altre. Així, per a cada òrbita, hom pot associar-li una classe de conjugació d'un subgrup de G (és a dir, el conjunt de tots els conjugats del subgrup). Denotem per (H) la classe de conjugació de H. Llavors hom diu que l'òrbita O té tipus (H) si l'estabilitzador Gx d'algun x de O pertany a (H). Sovint es diu que un tipus d'òrbita maximal és un tipus d'òrbita principal.

Teorema d'òrbita-estabilitzador i lema de Burnside

Les òrbites i els estabilitzadors estan íntimament relacionats. Fixat un x de X, considerem l'aplicació

GXgg.x.

La imatge d'aquesta aplicació és l'òrbita de x, i la coimatge[nota 2] és el conjunt de totes les classes laterals de Gx. El teorema del quocient estàndard de la teoria de conjunts proporciona una bijecció natural entre G/Gx i G.x. Més específicament, la bijecció ve donada per hGxh.x. Aquest resultat es coneix com teorema d'òrbita-estabilitzador. Des de la perspectiva de la teoria de categories, el teorema d'òrbita-estabilitzador es desprèn del fet que tot G-conjunt és una suma de quocients del G-conjunt G.

Si tant G com X són finits, llavors el teorema d'òrbita-estabilitzador, juntament amb el teorema de Lagrange, impliquen

|G.x|=[G:Gx]=|G|/|Gx|.

Un resultat relacionat amb el teorema d'òrbita-estabilitzador és el lema de Burnside:

|X/G|=1|G|gG|Xg|

on Xg és el conjunt de punts fixats per g. Aquest resultat és especialment útil quan tant G com X són finits, ja que es pit interpretar de la següent manera: el nombre d'òrbites és igual a la mitjana de punts fixats per cada element del grup.

Fixat un grup G, el conjunt de diferències formals de G-conjunts finits forma un anell, anomenat anell de Burnside de G, amb l'operació suma definida per la unió disjunta, i l'operació producte definida pel producte cartesià.

Accions de grup i grupoides

Hom pot situar la noció d'acció de grup en un context més ampli, emprant el grupoide d'accions G=GX associat a l'acció de grup, la qual cosa permet utilitzar tècniques de la teoria de grupoides, com ara les presentacions o les fibracions. Addicionalment, els estabilitzadors de l'acció són els grups-vèrtex del grupoide d'accions, i les òrbites en són els components.[4]

Aquest grupoide d'accions ve acompanyat d'un morfisme p:GG que és un morfisme recobridor de grupoides. Això permet relacionar aquests morfismes amb els espais revestiment de topologia.

Morfismes i isomorfismes entre G-conjunts

Si X i Y són dos G-conjunts, definim un morfisme de X cap a Y com una funció Plantilla:Nowrap tal que Plantilla:Nowrap per a tot g de G i tot x de X. Els morfismes de G-conjunts també s'anomenen aplicacions equivariants o G-aplicacions.

La composició de dos morfismes és també un morfisme.

Si un morfisme f és bijectiu, llavors el seu invers és també un morfisme, i hom diu que f és un isomorfisme, i els dos G-conjunts X i Y són isomorfs; a efectes pràctics, X i Y són indistingibles.

Plantilla:ÀncoraAlguns exemples d'isomorfismes:

  • Tota acció regular G és isomorfa a l'acció de G sobre G donada per la multiplicació per l'esquerra.
  • Tota acció lliure G és isomorfa a Plantilla:Nowrap, on S és un conjunt i G actua sobre Plantilla:Nowrap per multiplicació per l'esquerra en la primera coordenada (hom pot prendre S com el conjunt d'òrbites X/G).
  • Tota acció transitiva G és isomorfa a la multiplicació per l'esquerra per G sobre el conjunt de classes laterals per l'esquerra d'algun subgrup H de G.

Amb aquesta noció d'isomorfisme, la col·lecció de tots els G-conjunts forma una categoria; aquesta categoria és un topos de Grothendieck.

Accions de grup contínues

Hom pot considerar les accions de grup contínues: el grup G és un grup topològic, X és un espai topològic, i l'aplicació Plantilla:Nowrap és contínua respecte a la topologia producte de Plantilla:Nowrap. En aquest cas, hom diu que l'espai X és un G-espai. Aquest concepte és una generalització de les accions de grup, ja que tot grup es pot considerar que és un grup topològic si es pren la topologia discreta. Tots els conceptes que s'han introduït són encara vàlids en aquest nou context, però definim que els morfismes entre G-espais han de ser aplicacions contínues compatibles amb l'acció de G. El quocient X/G hereda la topologia quocient de X, i hom diu que és lPlantilla:'espai quocient de l'acció. Els enunciats anteriors sobre accions regulars, lliures i transitives no són vàlids per a accions de grup contínues.

Si G és un grup discret que actua sobre un espai topològic X, l'acció és pròpiament discontínua si i només si, per a qualsevol punt x de X, existeix un entorn obert U de x en X tal que el conjunt de tots els g de G que compleixen g(U)U consisteix únicament de la identitat.

Aquests resultats es poden generalitzar[4] per tal de construir el grupoide fonamental de l'espai d'òrbites d'una acció discontínua sobre un espai Hausdorff si, sota certes condicions locals, es pren com a partida el grupoide d'òrbites del grupoide fonamental de l'espai.

Una acció d'un grup G sobre un espai localment compacte X és cocompacte si existeix un subconjunt compacte A de X tal que Plantilla:Nowrap. Per a una acció pròpiament discontínua, la cocompacitat és equivalent a la compacitat de l'espai quocient X/G.

Hom diu que l'acció de G sobre X és pròpia si l'aplicació Plantilla:Nowrap que envia Plantilla:Nowrap és una aplicació pròpia.

Acció de grup fortament contínua i punts suaus

Donada una acció de grup G sobre un espai topològic X, hom diu que és fortament contínua si, per a tot x de X, l'aplicació Plantilla:Nowrap és contínua respecte a les topologies corresponents. Una tal acció indueix una acció sobre l'espai de funcions contínues de X, si es defineix Plantilla:Nowrap per a qualssevol g de G, f funció contínua sobre X, i x de X. Cal observar que, si bé és cert que tota acció de grup contínua és fortament contínua, el recíproc no és cert en general.[5]

El subespai dels punts suaus per l'acció és el subespai X de punts x tals que l'aplicació Plantilla:Nowrap és suau, és a dir, la funció és contínua i totes les seves derivades també ho són.

Variants i generalitzacions

Hom pot considerar també les accions de monoides sobre conjunts, exigint els mateixos dos axiomes anteriors. Tot i això, aquesta definició no produeix aplicacions bijectives i relacions d'equivalència.

En comptes d'accions sobre conjunts, hom pot definir accions de grups i de monoides sobre objectes d'una categoria arbitrària: cal començar amb un objecte X d'una determinada categoria, i llavors definir una acció sobre X com un homomorfisme de monoides cap al monoide d'endomorfismes de X. Si X té un conjunt subjacent, llavors aquest conjunt hereda totes les definicions i propietats que gem vist. Per exemple, si prenem la categoria dels espais vectorials, podem obtenir representacions de grup d'aquesta forma.

Hom pot visualitzar un grup G com una categoria amb un sol objecte en la qual tot morfisme és invertible. Llavors una acció de grup és un functor de G en la categoria de conjunts, i una representació de grup és un functor de G en la categoria d'espais vectorials. Un morfisme entre G-conjunts és llavors una transformació natural entre functors d'accions de grup.

A més d'accions contínues de grups topològics sobre espais topològics, hom pot també considerar accions suaus de grups de Lie sobre varietats suaus, o accions regulars de grups algebraics sobre varietats algebraiques.

Notes

  1. Si G és un grup amb l'operació *, el grup oposat de G es denota per Gop, i té els mateixos elements de G, i una operació definida per g1g2=g2*g1.
  2. La coimatge d'un homomorfisme f:AB és el quocient coimf=A/kerf del domini i el nucli.

Referències

Plantilla:Referències

Bibliografia

Enllaços externs

Plantilla:Commonscat

Plantilla:Viccionari-lateral