Funció hiperbòlica

De testwiki
Salta a la navegació Salta a la cerca
Una semirecta per l'origen talla la hipèrbola x2  y2 = 1 en el punt (cosha,sinha), on a és dues vegades l'àrea compresa per la semirecta, el semieix de les abscisses i la hipèrbola. (Vegeu la versió animada amb la comparació amb les funcions trigonomètriques (circulars).)

En matemàtiques, les funcions hiperbòliques són unes funcions amb unes propietats anàlogues a les de les funcions trigonomètriques (o circulars). Les funcions hiperbòliques bàsiques són el cosinus hiperbòlic (simbolitzat per cosh) i el sinus hiperbòlic (sinh), de les quals deriven la tangent hiperbòlica (tanh) i les altres, secant hiperbòlica (sech), cosecant hiperbòlica (csch) i cotangent hiperbòlica (coth), de la mateixa manera que a partir del cosinus (cos) i el sinus (sin) deriven les altres funcions trigonomètriques (tan, sec, csc i cot). Els seus símbols s'obtenen sufixant una h als símbols de les funcions trigonomètriques corresponents.

Les funcions hiperbòliques, en un domini apropiat, tenen unes funcions inverses que es representen amb una notació similar, amb el prefix arg- (per argument), o prefixos més breus, com ar- (per àrea), o fins i tot a-. Així, la funció inversa del cosinus hiperbòlic es representa per argcosh (o arcosh, o acosh); anàlogament les altres.

De la mateixa manera que els punts (cost,sint) formen una circumferència de radi 1, els punts (cosht,sinht) formen la meitat dreta de la hipèrbola equilàtera. Així, les funcions hiperbòliques prenen valors reals per a un argument real, a vegades anomenat angle hiperbòlic. En anàlisi complexa, les funcions hiperbòliques són simplement funcions racionals de les exponencials.

Les funcions hiperbòliques ocorren en la resolució d'algunes equacions diferencials lineals importants, per exemple la que defineix la catenària, i també en la resolució de l'equació de Laplace en coordenades cartesianes, d'importància fonamental en física.

Les funcions hiperbòliques van ser introduïdes vora els anys 1760 independentment per Vincenzo Riccati i Johann Heinrich Lambert.[1] Riccati feia servir Sc. i Cc. ([co]sinus circulare) per a referir-se a les funcions circulars, i Sh. i Ch. ([co]sinus hyperbolico) per a referir-se a les funcions hiperbòliques. Lambert adoptà els noms però en canvià les abreviatures.[2] Les abreviatures Sh i Ch s'usen encara sovint.

Expressions algebraiques estàndard

Plantilla:Imatge múltiple

Les funcions hiperbòliques són:[3]

  • Sinus hiperbòlic:
sinhx=exex2=e2x12ex
  • Cosinus hiperbòlic:
coshx=ex+ex2=e2x+12ex
  • Tangent hiperbòlica:
tanhx=sinhxcoshx=exexex+ex=e2x1e2x+1
  • Cotangent hiperbòlica:
cothx=coshxsinhx=ex+exexex=e2x+1e2x1
  • Secant hiperbòlica:
sechx=(coshx)1=2ex+ex=2exe2x+1
  • Cosecant hiperbòlica:
cschx=(sinhx)1=2exex=2exe2x1

Les funcions hiperbòliques també es poden introduir a partir dels "angles circulars imaginaris":

  • Sinus hiperbòlic:
sinhx=isinix
  • Cosinus hiperbòlic:
coshx=cosix
  • Tangent hiperbòlica:
tanhx=itanix
  • Cotangent hiperbòlica:
cothx=icotix
  • Secant hiperbòlica:
sechx=secix
  • Cosecant hiperbòlica:
cschx=icscix

on i és la unitat imaginària. Les formes complexes d'aquestes definicions deriven de la fórmula d'Euler.

Dominis i recorregut

Funció Domini Recorregut
sinhx
coshx [1, ∞)
tanhx (-1, 1)
cothx - {0} (-∞, -1)∪(1, ∞)
sechx (0, 1]
cschx - {0} - {0}

és el conjunt de tots els reals.[4]

Propietats

sinh, cosh i tanh
csch, sech i coth

Igual que les funcions trigonomètriques, les funcions hiperbòliques tenen una paritat definida

sinh(x)=sinhx
cosh(x)=coshx

d'on es dedueix que

tanh(x)=tanhx
coth(x)=cothx
sech(x)=sechx
csch(x)=cschx

Així doncs cosh i sech són funcions parelles, mentre que les altres són imparelles.

argsechx=argcosh1x
argcothx=argtanh1x

El sinus i el cosinus hiperbòlics satisfan la identitat[5]

cosh2xsinh2x=1

similar a la identitat trigonomètrica fonamental. (Notem que, per conveni, cosh² x significa (cosh x)², no pas cosh(cosh x), i anàlogament per a les altres funcions hiperbòliques.) Altres identitats són

tanh2x=1sech2x
coth2x=1+csch2x

La tangent hiperbòlica és la solució al problema de contorn no lineal[6]

12f=f3f;f(0)=f()=0

Es pot mostrar que l'àrea sota el graf de coshx és sempre igual a la longitud d'arc:[7]

area=abcoshx dx=ab1+(ddxcoshx)2 dx=longitud d'arc.

Funcions inverses com logaritmes

Plantilla:Article principal

Es compleixen les següents identitats[8][9]

argsinhx=ln(x+x2+1)
argcoshx=ln(x+x21);x1
argtanhx=12ln1+x1x;|x|<1
argcothx=12lnx+1x1;|x|>1
argsechx=ln1+1x2x;0<x1
argcschx=ln(1x+1+x2|x|)

Derivades

Plantilla:Article principal

ddxsinhx=coshx
ddxcoshx=sinhx
ddxtanhx=1tanh2x=sech2x=1/cosh2x
ddxcothx=1coth2x=csch2x=1/sinh2x
ddx cschx=cothx cschx
ddx sechx=tanhx sechx
ddxargsinhx=1x2+1
ddxargcoshx=1x21
ddxargtanhx=11x2
ddxargcschx=1|x|1+x2
ddxargsechx=1x1x2
ddxargcothx=11x2

Integrals

Per a una llista completa d'integrals de funcions hiperbòliques, vegeu llista d'integrals de funcions hiperbòliques

sinhaxdx=a1coshax+C
coshaxdx=a1sinhax+C
tanhaxdx=a1ln(coshax)+C
cothaxdx=a1ln(sinhax)+C
dua2+u2=argsinh(ua)+C
duu2a2=argcosh(ua)+C
dua2u2=a1argtanh(ua)+C;u2<a2
dua2u2=a1argcoth(ua)+C;u2>a2
duua2u2=a1argsech(ua)+C
duua2+u2=a1argcsch|ua|+C

On C és una constant d'integració.

Expressions en sèrie de Taylor

Les funcions hiperbòliques es poden expressar com a sèries de Taylor:

sinhx=x+x33!+x55!+x77!+=n=0x2n+1(2n+1)!
coshx=1+x22!+x44!+x66!+=n=0x2n(2n)!
tanhx=xx33+2x51517x7315+=n=122n(22n1)B2nx2n1(2n)!,|x|<π2
cothx=x1+x3x345+2x5945+=x1+n=122nB2nx2n1(2n)!,0<|x|<π (sèrie de Laurent)
sechx=1x22+5x42461x6720+=n=0E2nx2n(2n)!,|x|<π2
cschx=x1x6+7x336031x515120+=x1+n=12(122n1)B2nx2n1(2n)!,0<|x|<π (sèrie de Laurent)

on Bn són els nombres de Bernouilli i En són els nombres d'Euler.

Comparació amb les funcions trigonomètriques circulars

Considereu aquests dos subconjunts del pla cartesià

A={(cosht,sinht)t𝐑},B={(cost,sint)t𝐑}.

Llavors A forma la branca dreta de la hipèrbola equilàtera d'equació x² − y² = 1, mentre que B és la circumferència unitat. La diferència primària és que l'aplicació que parametritza B és una funció periòdica mentre que la que parametritza A no és. Ambdues parametritzacions són de fet grups uniparamètrics, per bé que B és compacte i A no ho és.

Les funcions hiperbòliques satisfan diverses identitats, similars a les identitats trigonometric. De fet, la regla d'Osborn'[10] afirma que es pot convertir qualsevol identitat trigonomètrica en una identitat hiperbòlica expandint-la completament en termes de potències enteres de sinus i cosinus, convertint sinus en sinh i cosinus en cosh, i canviant el signe de tots els termes que continguin un producte de 2, 6, 10, 14... sinhs. Això dona per exemple els teoremes d'addició

sinh(x+y)=sinhxcoshy+coshxsinhy
cosh(x+y)=coshxcoshy+sinhxsinhy
tanh(x+y)=tanhx+tanhy1+tanhxtanhy

les fórmules d'argument doble

sinh2x =2sinhxcoshx
cosh2x =cosh2x+sinh2x=2cosh2x1=2sinh2x+1
tanh2x =2tanhx1+tanh2x

o les d'argument meitat

sinhx2=12(coshx1)
coshx2=12(coshx+1)

La derivada de sinhx és coshx i la de coshx és sinhx; això és similar a les funcions trigonomètriques, per bé que el signe és diferent (la derivada de cosx és −sinx).

El gràfic de la funció a cosh(x/a) és la catenària, la corba descrita per una cadena flexible uniforme que penja lliurement entre dos punts fixats en un camp gravitatori uniforme.

Relació amb la funció exponencial

De les definicions del sinus hiperbòlic i el cosinus hiperbòlic podem obtenir les identitats següents:

ex=coshx+sinhx

i

ex=coshxsinhx.

Aquestes expressions són anàlogues a les expressions del cosinus i el sinus, basades en la fórmula d'Euler, com a sumes d'exponencials complexes.

Funcions hiperbòliques per a nombres complexos

Atès que la funció exponencial es pot definir per a qualsevol argument complex, es poden estendre les definicions de les funcions hiperbòliques també a arguments complexos. Les funcions cosh i sinh així definides són holomorfes.

Les relacions amb les funcions trigonomètriques usuals venen donades per la fórmula d'Euler per a nombres complexos:

eix=cosx+isinx
eix=cosxisinx

de manera que

coshix=12(eix+eix)=cosx
sinhix=12(eixeix)=isinx
cosh(x+iy)=cosh(x)cos(y)+isinh(x)sin(y)
sinh(x+iy)=sinh(x)cos(y)+icosh(x)sin(y)
tanhix=itanx
coshx=cosix
sinhx=isinix
tanhx=itanix

Així, les funcions hiperbòliques són periòdiques amb període 2πi (πi per a la tangent i la cotangent hiperbòliques).

Les funcions hiperbòliques en el pla complex
sinh complex
sinh complex
cosh complex
cosh complex
tanh complexa
tanh complexa
cotanh complexa
cotanh complexa
sech complexa
sech complexa
cosech complexa
cosech complexa
sinh(z) cosh(z) tanh(z) coth(z) sech(z) csch(z)

Vegeu també

Plantilla:Commonscat

Referències

Plantilla:Referències

Enllaços externs

Plantilla:Trigonometria Plantilla:Autoritat

  1. Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. Euler at 300: an appreciation. Mathematical Association of America, 2007. Pàgina 100.
  2. Georg F. Becker. Hyperbolic functions. Read Books, 1931. Pàgina xlviii.
  3. Plantilla:Ref-web
  4. Plantilla:Ref-web
  5. Plantilla:Ref-web
  6. Plantilla:Ref-web
  7. Plantilla:Ref-llibre, Extracte de la pàgina 472
  8. Plantilla:Ref-web
  9. Plantilla:Ref-web
  10. G. Osborn, Mnemonic for hyperbolic formulae, The Mathematical Gazette, p. 189, vol. 2, núm. 34, juliol 1902.