Gradient (matemàtiques)

De testwiki
Salta a la navegació Salta a la cerca
En les dues imatges, els valors de la funció es representen en blanc i negre. El negre representa valors más alts i el seu gradient corresponent es representa amb fletxes blaves.

En càlcul vectorial, el gradient f d'un camp escalar f és un camp vectorial que indica en cada punt del camp escalar la direcció del màxim increment d'ell mateix. El gradient es representa mitjançant l'operador diferencial nabla seguit de la funció.

Definició

Un gradient d'un camp escalar en un punt és el vector definit com l'únic que permet trobar la derivada direccional en qualsevol direcció com a

ϕn=(gradϕ)n^

on n^ és un vector unitari i ϕ/n la derivada direccional de ϕ en la direcció de n^ (que informa sobre la raó de variació del camp escalar al desplaçar-nos segons aquesta direcció):

ϕnlimϵ0ϕ(r+ϵn^)ϕ(r)ϵ

Una forma equivalent de definir el gradient és com l'únic vector que, multiplicat per qualsevol desplaçament infinitesimal, dona el diferencial del camp escalar

dϕ=ϕ(r+dr)ϕ(r)=ϕdr

Amb la definició anterior, el gradient està caracteritzat de forma unívoca.

El gradient s'expressa alternativament mitjançant l'ús de l'operador nabla

gradϕ=ϕ

Propietats

El gradient verifica que:

  • És ortogonal a les superfícies definides per ϕ = constant.
  • Apunta en la direcció en què la derivada direccional és màxima.
  • El seu mòdul és igual a la derivada direccional màxima.
  • S'anul·la en els punts estacionaris màxims, mínims.
  • El camp format pel gradient en cada punt és sempre irrotacional, és a dir, ×(ϕ)0

Expressió en diferents sistemes de coordenades

A partir de la definició de gradient, es pot trobar l'expressió en diferents sistemes de coordenades. Així, en coordenades cartesianes, és

ϕ=(ϕx,ϕy,ϕz)

En un sistema de coordenades ortogonals, el gradient necessita els factors d'escala, mitjançant l'expressió

ϕ=1h1ϕq1q^1+1h2ϕq2q^2+1h3ϕq3q^3

Per coordenades cilíndriques (hρ=hz=1, hφ=ρ) resulta

ϕ=ϕρρ^+1ρϕφφ^+ϕzz^

i finalment per coordenades esfèriques (hr=1, hθ=r, hφ=rsinθ)

ϕ=ϕrr^+1rϕθθ^+1rsinθϕφφ^

Exemple

Donada la funció ϕ=2x+3y2sin(z), el seu gradient associat és:

ϕ=(ϕx,ϕy,ϕz)=(2,6y,cos(z)).

Vegeu també